

Welcome to python-nnf’s documentation!

python-nnf is a package for working with logical sentences written in the negation normal form [https://en.wikipedia.org/wiki/Negation_normal_form].

Contents:

	Installing

	Module reference
	Module contents

	Submodules

	nnf.operators module

	nnf.dimacs module

	nnf.dsharp module

	nnf.amc module

	nnf.tseitin module

	nnf.kissat module

	nnf.pysat module

	Command line interface
	SAT solving

	Sentence summary

	Visualizing sentences

	Caveats
	Node duplication

	Decomposability and determinism

	Other duplication inefficiencies

Introduction

Sentences are made up of nodes. To start with, define some variables:

>>> from nnf import Var
>>> A, B, C = Var('A'), Var('B'), Var('C')

Then, if you want to write the sentence “A or B”:

>>> from nnf import Or
>>> sentence = Or({A, B})
>>> sentence = A | B # alternative syntax

Or “B and not C”:

>>> from nnf import And
>>> sentence = And({B, ~C})
>>> sentence = B & ~C

Of course you can nest these, for more interesting sentences:

>>> sentence = Or({And({A, B}), And({~B, C})})

You can ask queries, and perform transformations:

>>> sentence.decomposable()
True
>>> sentence.smooth()
False
>>> list(sentence.models())
[{'A': True, 'B': True, 'C': True}, {'A': True, 'B': False, ...
>>> new = sentence.condition({'B': True})
>>> new
Or({And({A, true}), And({false, C})})
>>> list(new.models())
[{'A': True, 'C': True}, {'A': True, 'C': False}]
>>> new.simplify()
A

Indices and tables

	Index

	Module Index

	Search Page

Installing

python-nnf can be installed with pip:

pip install --user nnf

Module reference

Module contents

	
class nnf.NNF

	Bases: object

Base class for all NNF sentences.

	
clause() → bool

	The sentence is a clause.

Clauses are Or nodes with variable children that don’t share names.

	
condition(model: Dict[Hashable, bool]) → nnf.NNF

	Fill in all the values in the dictionary.

	
consistent() → bool

	Some set of values exists that makes the sentence correct.

This method doesn’t necessarily try to find an example, which can
make it faster. It’s decent at decomposable sentences and sentences in
CNF, and bad at other sentences.

	
contradicts(other: nnf.NNF) → bool

	There is no set of values that satisfies both sentences.

	
decision_node() → bool

	The sentence is a valid binary decision diagram (BDD).

	
decomposable() → bool

	The children of each And node don’t share variables, recursively.

	
deduplicate() → T_NNF

	Return a copy of the sentence without any duplicate objects.

If a node has multiple parents, it’s possible for it to be
represented by two separate objects. This method gets rid of that
duplication.

It’s better to avoid the duplication in the first place. This method is
for diagnostic purposes, in combination with object_count().

	
deterministic() → bool

	The children of each Or node contradict each other.

May be very expensive.

	
entails(other: nnf.NNF) → bool

	Return whether other is always true if the sentence is true.

This is faster if self is a term or other is a clause.

	
equivalent(other: nnf.NNF) → bool

	Test whether two sentences have the same models.

If the sentences don’t contain the same variables they are
considered equivalent if the variables that aren’t shared are
independent, i.e. their value doesn’t affect the value of the sentence.

	
flat() → bool

	A sentence is flat if its height is at most 2.

That is, there are at most two layers below the root node.

	
forget(names: Iterable[Hashable]) → nnf.NNF

	Forget a set of variables from the theory.

Has the effect of returning a theory without the variables provided,
such that every model of the new theory has an extension (i.e., an
assignment) to the forgotten variables that is a model of the original
theory.

	Parameters

	names – An iterable of the variable names to be forgotten

	
forget_aux() → nnf.NNF

	Returns a theory that forgets all of the auxillary variables

	
height() → int

	The number of edges between here and the furthest leaf.

	
implicants() → nnf.Or[nnf.And[nnf.Var]][nnf.And[nnf.Var][nnf.Var]]

	Extract the prime implicants of the sentence.

Prime implicants are the minimal terms that imply the sentence. This
method returns a disjunction of terms that’s equivalent to the
original sentence, and minimal, meaning that there are no terms that
imply the sentence that are strict subsets of any of the terms in
this representation, so no terms could be made smaller.

	
implicates() → nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]

	Extract a prime implicate cover of the sentence.

Prime implicates are the minimal implied clauses. This method
returns a conjunction of clauses that’s equivalent to the original
sentence, and minimal, meaning that there are no clauses implied by
the sentence that are strict subsets of any of the clauses in this
representation, so no clauses could be made smaller.

While implicants() returns all implicants, this method may
only return some of the implicates.

	
implies(other: nnf.NNF) → bool

	Return whether other is always true if the sentence is true.

This is faster if self is a term or other is a clause.

	
is_CNF(strict: bool = False) → bool

	Return whether the sentence is in the Conjunctive Normal Form.

	Parameters

	strict – If True, follow the definition of the
Knowledge Compilation Map [https://jair.org/index.php/jair/article/view/10311],
requiring that a variable doesn’t appear multiple times
in a single clause.

	
is_DNF(strict: bool = False) → bool

	Return whether the sentence is in the Disjunctive Normal Form.

	Parameters

	strict – If True, follow the definition of the
Knowledge Compilation Map [https://jair.org/index.php/jair/article/view/10311],
requiring that a variable doesn’t appear multiple times
in a single term.

	
is_MODS() → bool

	Return whether the sentence is in MODS form.

MODS sentences are disjunctions of terms representing models,
making the models trivial to enumerate.

	
leaf() → bool

	True if the node doesn’t have children.

That is, if the node is a variable, or one of true and false.

	
make_pairwise() → nnf.NNF

	Alter the sentence so that all internal nodes have two children.

This can be easier to handle in some cases.

	
make_smooth() → nnf.NNF

	Transform the sentence into an equivalent smooth sentence.

	
mark_deterministic() → None

	Declare for optimization that this sentence is deterministic.

Note that this goes by object identity, not equality. This may matter
in obscure cases where you instantiate the same sentence multiple
times.

	
marked_deterministic() → bool

	Whether this sentence has been marked as deterministic.

	
model_count() → int

	Return the number of models the sentence has.

This can be done efficiently for sentences that are decomposable and
deterministic.

	
models() → Iterator[Dict[Hashable, bool]]

	Yield all dictionaries of values that make the sentence correct.

Much faster on sentences that are decomposable. Even faster if they’re
also deterministic.

	
negate() → nnf.NNF

	Return a new sentence that’s true iff the original is false.

	
object_count() → int

	Return the number of distinct node objects in the sentence.

	
project(names: Iterable[Hashable]) → nnf.NNF

	Dual of forget(): will forget all variables not given

	
satisfiable() → bool

	Some set of values exists that makes the sentence correct.

This method doesn’t necessarily try to find an example, which can
make it faster. It’s decent at decomposable sentences and sentences in
CNF, and bad at other sentences.

	
satisfied_by(model: Dict[Hashable, bool]) → bool

	The given dictionary of values makes the sentence correct.

	
simplify(merge_nodes: bool = True) → nnf.NNF

	Apply the following transformations to make the sentence simpler:

	If an And node has false as a child, replace it by false

	If an Or node has true as a child, replace it by true

	Remove children of And nodes that are true

	Remove children of Or nodes that are false

	If an And or Or node only has one child, replace it by that child

	If an And or Or node has a child of the same type, merge them

	Parameters

	merge_nodes – if False, don’t merge internal nodes. In
certain cases, merging them may increase the
size of the sentence.

	
simply_conjunct() → bool

	The children of And nodes are variables that don’t share names.

	
simply_disjunct() → bool

	The children of Or nodes are variables that don’t share names.

	
size() → int

	The number of edges in the sentence.

Note that sentences are rooted DAGs, not trees. If a node has
multiple parents its edges will still be counted just once.

	
smooth() → bool

	The children of each Or node all use the same variables.

	
solve() → Optional[Dict[Hashable, bool]]

	Return a satisfying model, or None if unsatisfiable.

	
term() → bool

	The sentence is a term.

Terms are And nodes with variable children that don’t share names.

	
to_CNF(simplify: bool = True) → nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]

	Compile theory to a semantically equivalent CNF formula.

	Parameters

	simplify – If True, simplify clauses even if that means
eliminating variables.

	
to_DOT(*, color: bool = False, color_dict: Optional[Dict[str, str]] = None, label: str = 'text', label_dict: Optional[Dict[str, str]] = None) → str

	Return a representation of the sentence in the DOT language.

DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)]
is a graph visualization language.

	Parameters

	
	color – If True, color the nodes. This is a bit of an
eyesore, but might make them easier to understand.

	label – If 'text', the default, label nodes with “AND”,
“OR”, etcetera. If 'symbol', label them with
unicode symbols like “∧” and “⊥”.

	color_dict – Use an alternative palette. This should be a
dictionary with keys 'and', 'or',
'true', 'false', 'var' and 'neg'.
Not all keys have to be included. Passing a
dictionary implies color=True.

	label_dict – Use alternative labels for nodes. This should be
a dictionary with keys 'and', 'or',
'true' and 'false'. Not all keys have to
be included.

	
to_MODS() → nnf.Or[nnf.And[nnf.Var]][nnf.And[nnf.Var][nnf.Var]]

	Convert the sentence to a MODS sentence.

	
to_model() → Dict[Hashable, bool]

	If the sentence directly represents a model, convert it to that.

A sentence directly represents a model if it’s a conjunction of
(unique) variables, or a single variable.

	
valid() → bool

	Check whether the sentence is valid (i.e. always true).

This can be done efficiently for sentences that are decomposable and
deterministic.

	
vars() → FrozenSet[Hashable]

	The names of all variables that appear in the sentence.

	
walk() → Iterator[nnf.NNF]

	Yield all nodes in the sentence, depth-first.

Nodes with multiple parents are yielded only once.

	
class nnf.Internal(children: Iterable[T_NNF_co] = ())

	Bases: nnf.NNF, typing.Generic

Base class for internal nodes, i.e. And and Or nodes.

	
children

	

	
leaf() → bool

	True if the node doesn’t have children.

That is, if the node is a variable, or one of true and false.

	
map(func: Callable[[T_NNF_co], U_NNF]) → nnf.Internal[~U_NNF][U_NNF]

	Apply func to all of the node’s children.

	
class nnf.And(children: Iterable[T_NNF_co] = ())

	Bases: nnf.Internal

Conjunction nodes, which are only true if all of their children are.

	
decision_node() → bool

	The sentence is a valid binary decision diagram (BDD).

	
class nnf.Or(children: Iterable[T_NNF_co] = ())

	Bases: nnf.Internal

Disjunction nodes, which are true if any of their children are.

	
decision_node() → bool

	The sentence is a valid binary decision diagram (BDD).

	
class nnf.Var(name: Hashable, true: bool = True)

	Bases: nnf.NNF

A variable, or its negation.

If its name is a string, its repr will use that name directly.
Otherwise it will use more ordinary constructor syntax.

>>> a = Var('a')
>>> a
a
>>> ~a
~a
>>> b = Var('b')
>>> a | ~b == Or({Var('a', True), Var('b', False)})
True
>>> Var(10)
Var(10)
>>> Var(('a', 'b'), False)
~Var(('a', 'b'))

	
static aux() → nnf.Var

	Create an auxiliary variable with a unique label.

	
decision_node() → bool

	The sentence is a valid binary decision diagram (BDD).

	
name

	

	
true

	

	
class nnf.Aux(hex=None, bytes=None, bytes_le=None, fields=None, int=None, version=None, *, is_safe=<SafeUUID.unknown: None>)

	Bases: uuid.UUID

Unique UUID labels for auxiliary variables.

Don’t instantiate directly, call Var.aux() instead.

	
nnf.all_models(names: Iterable[Hashable]) → Iterator[Dict[Hashable, bool]]

	Yield dictionaries with all possible boolean values for the names.

>>> list(all_models(["a", "b"]))
[{'a': False, 'b': False}, {'a': False, 'b': True}, ...

	
nnf.complete_models(models: Iterable[Dict[Hashable, bool]], names: Iterable[Hashable]) → Iterator[Dict[Hashable, bool]]

	

	
nnf.decision(var: nnf.Var, if_true: T_NNF, if_false: U_NNF) → nnf.Or[typing.Union[nnf.And[typing.Union[nnf.Var, ~T_NNF]], nnf.And[typing.Union[nnf.Var, ~U_NNF]]]][Union[nnf.And[typing.Union[nnf.Var, ~T_NNF]][Union[nnf.Var, T_NNF]], nnf.And[typing.Union[nnf.Var, ~U_NNF]][Union[nnf.Var, U_NNF]]]]

	Create a decision node with a variable and two branches.

	Parameters

	
	var – The variable node to decide on.

	if_true – The branch if the decision is true.

	if_false – The branch if the decision is false.

	
nnf.true = true

	A node that’s always true. Technically an And node without children.

	
nnf.false = false

	A node that’s always false. Technically an Or node without children.

Submodules

nnf.operators module

Convenience functions for logical relationships that are not part of NNF.

These functions will simulate those relationships, often by doubling
sentences or altering their structure to negate them. This makes them
inefficient.

	
nnf.operators.xor(a: nnf.NNF, b: nnf.NNF) → nnf.Or[nnf.And[nnf.NNF]][nnf.And[nnf.NNF][nnf.NNF]]

	Exactly one of the operands is true.

	
nnf.operators.nand(a: nnf.NNF, b: nnf.NNF) → nnf.Or[nnf.NNF][nnf.NNF]

	At least one of the operands is false.

	
nnf.operators.nor(a: nnf.NNF, b: nnf.NNF) → nnf.And[nnf.NNF][nnf.NNF]

	Both of the operands are false.

	
nnf.operators.implies(a: nnf.NNF, b: nnf.NNF) → nnf.Or[nnf.NNF][nnf.NNF]

	b is true whenever a is true.

	
nnf.operators.implied_by(a: nnf.NNF, b: nnf.NNF) → nnf.Or[nnf.NNF][nnf.NNF]

	a is true whenever b is true.

	
nnf.operators.iff(a: nnf.NNF, b: nnf.NNF) → nnf.Or[nnf.And[nnf.NNF]][nnf.And[nnf.NNF][nnf.NNF]]

	a is true if and only if b is true.

	
nnf.operators.and_(a: T_NNF, b: U_NNF) → nnf.And[typing.Union[~T_NNF, ~U_NNF]][Union[T_NNF, U_NNF]]

	a and b are both true. Included for completeness.

	
nnf.operators.or_(a: T_NNF, b: U_NNF) → nnf.Or[typing.Union[~T_NNF, ~U_NNF]][Union[T_NNF, U_NNF]]

	a or b is true. Included for completeness.

nnf.dimacs module

A parser and serializer for the DIMACS
CNF and SAT formats [https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html].

	
nnf.dimacs.dump(obj: nnf.NNF, fp: TextIO, *, num_variables: Optional[int] = None, var_labels: Optional[Dict[Hashable, int]] = None, comment_header: Optional[str] = None, mode: str = 'sat') → None

	Dump a sentence into an open file in a DIMACS format.

Variable names have to be integers. If the variables in the sentence you
want to dump are not integers, you can pass a var_labels dictionary
to map names to integers.

	Parameters

	
	obj – The sentence to dump.

	fp – The open file.

	num_variables – Override the number of variables, in case there
are variables that don’t appear in the sentence.

	var_labels – A dictionary mapping variable names to integers,
to rename non-integer variables.

	comment_header – A comment to include at the top of the file. May
include newlines.

	mode – Either 'sat' to dump in the general SAT format,
or 'cnf' to dump in the specialized CNF format.

	
nnf.dimacs.load(fp: TextIO) → Union[nnf.NNF, nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]]

	Load a sentence from an open file.

The format is automatically detected.

	
nnf.dimacs.dumps(obj: nnf.NNF, *, num_variables: Optional[int] = None, var_labels: Optional[Dict[Hashable, int]] = None, comment_header: Optional[str] = None, mode: str = 'sat') → str

	Like dump(), but to a string instead of to a file.

	
nnf.dimacs.loads(s: str) → Union[nnf.NNF, nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]]

	Like load(), but from a string instead of from a file.

	
exception nnf.dimacs.DimacsError

	Bases: Exception

	
exception nnf.dimacs.EncodeError

	Bases: nnf.dimacs.DimacsError

	
exception nnf.dimacs.DecodeError

	Bases: nnf.dimacs.DimacsError

nnf.dsharp module

Interoperability with DSHARP [https://github.com/QuMuLab/dsharp].

load and loads can be used to parse files created by DSHARP’s
-Fnnf option.

compile invokes DSHARP directly to compile a sentence. This requires
having DSHARP installed.

The parser was derived by studying DSHARP’s output and source code. This
format might be some sort of established standard, in which case this
parser might reject or misinterpret some valid files in the format.

DSHARP may not work properly for some (usually trivially) unsatisfiable
sentences, incorrectly reporting there’s a solution. This bug dates back to
sharpSAT, on which DSHARP was based:

https://github.com/marcthurley/sharpSAT/issues/5

It was independently discovered by hypothesis during testing of this module.

	
nnf.dsharp.load(fp: TextIO, var_labels: Optional[Dict[int, Hashable]] = None) → nnf.NNF

	Load a sentence from an open file.

An optional var_labels dictionary can map integers to other names.

	
nnf.dsharp.loads(s: str, var_labels: Optional[Dict[int, Hashable]] = None) → nnf.NNF

	Load a sentence from a string.

	
nnf.dsharp.compile(sentence: nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]], executable: str = 'dsharp', smooth: bool = False, timeout: Optional[int] = None, extra_args: Sequence[str] = ()) → nnf.NNF

	Run DSHARP to compile a CNF sentence to (s)d-DNNF.

This requires having DSHARP installed.

The returned sentence will be marked as deterministic.

	Parameters

	
	sentence – The CNF sentence to compile.

	executable – The path of the dsharp executable. If the
executable is in your PATH there’s no need to set this.

	smooth – Whether to produce a smooth sentence.

	timeout – Tell DSHARP to give up after a number of seconds.

	extra_args – Extra arguments to pass to DSHARP.

nnf.amc module

An implementation of
algebraic model counting [https://arxiv.org/abs/1211.4475].

	
nnf.amc.eval(node: nnf.NNF, add: Callable[[T, T], T], mul: Callable[[T, T], T], add_neut: T, mul_neut: T, labeling: Callable[[nnf.Var], T]) → T

	Execute an AMC technique, given a semiring and a labeling function.

	Parameters

	
	node – The sentence to calculate the value of.

	add – The ⊕ operator, to combine nnf.Or nodes.

	mul – The ⊗ operator, to combine nnf.And nodes.

	add_neut – e^⊕, the neutral element of the ⊕ operator.

	mul_neut – e^⊗, the neutral element of the ⊗ operator.

	labeling – The labeling function, to assign a value to each
variable node.

	
nnf.amc.reduce(node: nnf.NNF, add_key: Optional[Callable[[T], Any]], mul: Callable[[T, T], T], add_neut: T, mul_neut: T, labeling: Callable[[nnf.Var], T]) → nnf.NNF

	Execute AMC reduction on a sentence.

In AMC reduction, the ⊕ operator must be max on some total order,
and the branches of the sentence that don’t contribute to the maximum
value are removed. This leaves a simpler sentence with only the models
with a maximum value.

	Parameters

	
	node – The sentence.

	add_key – A function given to max’s key argument to
determine the total order of the ⊕ operator. Pass
None to use the default ordering.

	mul – See eval().

	add_neut – See eval().

	mul_neut – See eval().

	labeling – See eval().

	Returns

	The transformed sentence.

	
nnf.amc.SAT(node: nnf.NNF) → bool

	Determine whether a DNNF sentence is satisfiable.

	
nnf.amc.NUM_SAT(node: nnf.NNF) → int

	Determine the number of models that satisfy a sd-DNNF sentence.

	
nnf.amc.WMC(node: nnf.NNF, weights: Callable[[nnf.Var], float]) → float

	Model counting of sd-DNNF sentences, weighted by variables.

	Parameters

	
	node – The sentence to measure.

	weights – A dictionary mapping variable nodes to weights.

	
nnf.amc.PROB(node: nnf.NNF, probs: Dict[Hashable, float]) → float

	Model counting of d-DNNF sentences, weighted by probabilities.

	Parameters

	
	node – The sentence to measure.

	probs – A dictionary mapping variable names to probabilities.

	
nnf.amc.GRAD(node: nnf.NNF, probs: Dict[Hashable, float], k: Optional[Hashable] = None) → Tuple[float, float]

	Calculate a gradient of a d-DNNF sentence being true depending on the
value of a variable, given probabilities for all variables.

	Parameters

	
	node – The sentence.

	probs – A dictionary mapping variable names to probabilities.

	k – The name of the variable to check relative to.

	Returns

	A tuple of two floats (probability, gradient).

	
nnf.amc.MPE(node: nnf.NNF, probs: Dict[Hashable, float]) → float

	

	
nnf.amc.maxplus_reduce(node: nnf.NNF, labels: Dict[nnf.Var, float]) → nnf.NNF

	Execute AMC reduction using the maxplus algebra.

	Parameters

	
	node – The sentence.

	labels – A dictionary mapping variable nodes to numbers.

nnf.tseitin module

Transformations using the well-known Tseitin encoding [https://en.wikipedia.org/wiki/Tseytin_transformation].

The Tseitin transformation converts any arbitrary circuit to one in CNF in
polynomial time/space. It does so at the cost of introducing new variables
(one for each logical connective in the formula).

	
nnf.tseitin.to_CNF(theory: nnf.NNF, simplify: bool = True) → nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]

	Convert an NNF into CNF using the Tseitin Encoding.

	Parameters

	
	theory – Theory to convert.

	simplify – If True, simplify clauses even if that means eliminating
variables.

nnf.kissat module

Interoperability with kissat [http://fmv.jku.at/kissat/].

solve invokes the SAT solver directly on the given theory.

	
nnf.kissat.solve(sentence: nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]], extra_args: Sequence[str] = ()) → Optional[Dict[Hashable, bool]]

	Run kissat to compute a satisfying assignment.

	Parameters

	
	sentence – The CNF sentence to solve.

	extra_args – Extra arguments to pass to kissat.

nnf.pysat module

	
nnf.pysat.satisfiable(sentence: nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]) → bool

	Return whether a CNF sentence is satisfiable.

	
nnf.pysat.solve(sentence: nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]) → Optional[Dict[Hashable, bool]]

	Return a model of a CNF sentence, or None if unsatisfiable.

	
nnf.pysat.models(sentence: nnf.And[nnf.Or[nnf.Var]][nnf.Or[nnf.Var][nnf.Var]]) → Iterator[Dict[Hashable, bool]]

	Yield all models of a CNF sentence.

	
nnf.pysat.available = False

	Indicates whether the PySAT library is installed and available for use.

Command line interface

Some of python-nnf’s functionality is exposed through a command line tool. It can be invoked as pynnf or python3 -m nnf.

SAT solving

pynnf sat tests whether a sentence is satisfiable, while pynnf sharpsat counts how many solutions it has.

Add -v to get extra information about the sentence and the running time.

Example:

$ pynnf sat uf20-01.cnf
SATISFIABLE

Beware that it’s much slower than dedicated solvers like MiniSat [http://minisat.se/].

Sentence summary

pynnf info shows basic information about a sentence.

Examples:

$ pynnf info uf20-01.cnf
Sentence is in CNF.
Variables: 20
Size: 360
Clauses: 90
Clause size: 3

$ pynnf info uf100-016.cnf.nnf
Sentence is decomposable.
Variables: 97
Size: 109

Visualizing sentences

pynnf draw converts sentences to a DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] representation, and either outputs that or feeds it to dot to immediately output an image.

Immediately outputting an image requires having dot installed. It’s done when the output file has an image extension, or when a format is passed with the -f flag.

Examples:

$ pynnf draw uf20-01.nnf out.png # Create a PNG image

$ pynnf draw uf20-01.nnf out.gv # Create a DOT representation

$ pynnf draw uf20-01.nnf out.pdf # Create a PDF vector image

$ pynnf draw -f png uf20-01.nnf - | convert -flip - out.png # Output a PNG image to be processed by imagemagick

See pynnf draw --help for more information.

Caveats

There are a few things to keep in mind when using python-nnf.

Node duplication

If the same node occurs multiple times in a sentence, then it often pays to make sure that it isn’t created multiple times.

Here’s a (contrived) example of two ways to construct the same sentence:

>>> inefficient = And({
... Or({A, B}),
... And({A, Or({A, B})}),
... })
>>> dup_node = Or({A, B})
>>> efficient = And({
... dup_node,
... And({A, dup_node}),
... })

These objects behave identically, but the first one stores the node Or({A, B}) twice, and the other stores it only once. That means the second one uses less memory.

For a lot of sentences, this isn’t worth worrying about. But if you have many nodes that occur multiple times, and they descend from nodes that occur multiple times, you may end up using a lot more memory than necessary.

The .object_count() and .deduplicate() methods exist to diagnose this problem. .object_count() tells you how many actual objects are used to represent the sentence, and .deduplicate() returns a maximally compact copy.

If .deduplicate() changes the value of .object_count() a lot then the sentence could benefit from watching out not to create objects multiple times.

>>> inefficient.object_count()
6
>>> inefficient.deduplicate().object_count()
5

In this case the difference is pretty small.

Decomposability and determinism

A lot of methods are much faster to perform on sentences that are decomposable or deterministic, such as model enumeration.

Decomposability is automatically detected.

Determinism is too expensive to automatically detect, but it can give a huge speedup. If you know a sentence to be deterministic, run .mark_deterministic() to enable the relevant optimizations.

A compiler like DSHARP [https://github.com/QuMuLab/dsharp] may be able to convert some sentences into equivalent deterministic decomposable sentences. The output of DSHARP can be loaded using the nnf.dsharp module. Sentences returned by nnf.dsharp.compile() are automatically marked as deterministic.

Other duplication inefficiencies

Even when properly deduplicated, the kind of sentence that’s vulnerable to node duplication might still be inefficient to work with for some operations.

A known offender is equality (==). Currently, if two of such sentences are compared that are equal but don’t share any objects, it takes a very long time even if both sentences don’t have any duplication within themselves.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nnf	

 	
 	
 nnf.amc	

 	
 	
 nnf.dimacs	

 	
 	
 nnf.dsharp	

 	
 	
 nnf.kissat	

 	
 	
 nnf.operators	

 	
 	
 nnf.pysat	

 	
 	
 nnf.tseitin	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X

A

 	
 	all_models() (in module nnf)

 	And (class in nnf)

 	and_() (in module nnf.operators)

 	
 	Aux (class in nnf)

 	aux() (nnf.Var static method)

 	available (in module nnf.pysat)

C

 	
 	children (nnf.Internal attribute)

 	clause() (nnf.NNF method)

 	compile() (in module nnf.dsharp)

 	
 	complete_models() (in module nnf)

 	condition() (nnf.NNF method)

 	consistent() (nnf.NNF method)

 	contradicts() (nnf.NNF method)

D

 	
 	decision() (in module nnf)

 	decision_node() (nnf.And method)

 	(nnf.NNF method)

 	(nnf.Or method)

 	(nnf.Var method)

 	DecodeError

 	
 	decomposable() (nnf.NNF method)

 	deduplicate() (nnf.NNF method)

 	deterministic() (nnf.NNF method)

 	DimacsError

 	dump() (in module nnf.dimacs)

 	dumps() (in module nnf.dimacs)

E

 	
 	EncodeError

 	entails() (nnf.NNF method)

 	
 	equivalent() (nnf.NNF method)

 	eval() (in module nnf.amc)

F

 	
 	false (in module nnf)

 	flat() (nnf.NNF method)

 	
 	forget() (nnf.NNF method)

 	forget_aux() (nnf.NNF method)

G

 	
 	GRAD() (in module nnf.amc)

H

 	
 	height() (nnf.NNF method)

I

 	
 	iff() (in module nnf.operators)

 	implicants() (nnf.NNF method)

 	implicates() (nnf.NNF method)

 	implied_by() (in module nnf.operators)

 	implies() (in module nnf.operators)

 	(nnf.NNF method)

 	
 	Internal (class in nnf)

 	is_CNF() (nnf.NNF method)

 	is_DNF() (nnf.NNF method)

 	is_MODS() (nnf.NNF method)

L

 	
 	leaf() (nnf.Internal method)

 	(nnf.NNF method)

 	load() (in module nnf.dimacs)

 	(in module nnf.dsharp)

 	
 	loads() (in module nnf.dimacs)

 	(in module nnf.dsharp)

M

 	
 	make_pairwise() (nnf.NNF method)

 	make_smooth() (nnf.NNF method)

 	map() (nnf.Internal method)

 	mark_deterministic() (nnf.NNF method)

 	marked_deterministic() (nnf.NNF method)

 	
 	maxplus_reduce() (in module nnf.amc)

 	model_count() (nnf.NNF method)

 	models() (in module nnf.pysat)

 	(nnf.NNF method)

 	MPE() (in module nnf.amc)

N

 	
 	name (nnf.Var attribute)

 	nand() (in module nnf.operators)

 	negate() (nnf.NNF method)

 	NNF (class in nnf)

 	nnf (module)

 	nnf.amc (module)

 	nnf.dimacs (module)

 	
 	nnf.dsharp (module)

 	nnf.kissat (module)

 	nnf.operators (module)

 	nnf.pysat (module)

 	nnf.tseitin (module)

 	nor() (in module nnf.operators)

 	NUM_SAT() (in module nnf.amc)

O

 	
 	object_count() (nnf.NNF method)

 	
 	Or (class in nnf)

 	or_() (in module nnf.operators)

P

 	
 	PROB() (in module nnf.amc)

 	
 	project() (nnf.NNF method)

R

 	
 	reduce() (in module nnf.amc)

S

 	
 	SAT() (in module nnf.amc)

 	satisfiable() (in module nnf.pysat)

 	(nnf.NNF method)

 	satisfied_by() (nnf.NNF method)

 	simplify() (nnf.NNF method)

 	simply_conjunct() (nnf.NNF method)

 	
 	simply_disjunct() (nnf.NNF method)

 	size() (nnf.NNF method)

 	smooth() (nnf.NNF method)

 	solve() (in module nnf.kissat)

 	(in module nnf.pysat)

 	(nnf.NNF method)

T

 	
 	term() (nnf.NNF method)

 	to_CNF() (in module nnf.tseitin)

 	(nnf.NNF method)

 	to_DOT() (nnf.NNF method)

 	
 	to_model() (nnf.NNF method)

 	to_MODS() (nnf.NNF method)

 	true (in module nnf)

 	(nnf.Var attribute)

V

 	
 	valid() (nnf.NNF method)

 	
 	Var (class in nnf)

 	vars() (nnf.NNF method)

W

 	
 	walk() (nnf.NNF method)

 	
 	WMC() (in module nnf.amc)

X

 	
 	xor() (in module nnf.operators)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to python-nnf’s documentation!

 		
 Installing

 		
 Module reference

 		
 Module contents

 		
 Submodules

 		
 nnf.operators module

 		
 nnf.dimacs module

 		
 nnf.dsharp module

 		
 nnf.amc module

 		
 nnf.tseitin module

 		
 nnf.kissat module

 		
 nnf.pysat module

 		
 Command line interface

 		
 SAT solving

 		
 Sentence summary

 		
 Visualizing sentences

 		
 Caveats

 		
 Node duplication

 		
 Decomposability and determinism

 		
 Other duplication inefficiencies

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

